Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203772

RESUMO

Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.


Assuntos
Alcenos , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Prótons , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X , Acrilatos
2.
Membranes (Basel) ; 13(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676909

RESUMO

In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.

3.
Membranes (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36676852

RESUMO

Layer-by-layer adsorption allows the creation of versatile functional coatings for ion exchange membranes, but the stability of the coating and resulting properties of modified membranes in their operation is a frequently asked question. This paper examines the changes in voltammetric curves of layer-by-layer coated cation exchange membranes and pH-metry of desalination chamber with a studied membrane and an auxiliary anion exchange membrane after short-term tests, including over-limiting current modes. The practical operation of the membranes did not affect the voltammetric curves, but enhanced the generation of H+ and OH- ions in a system with polyethylenimine modified membrane in Ca2+ containing solution. It is shown that a distinction between the voltammetric curves of the membranes modified and the different polyamines persists during the operation and that, in the case of polyethylenimine, there is an additional zone of growth of potential drop in voltammetric curves and stronger generation of H+ and OH- ions as indicated by pH-metry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...